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ABSTRACT
Approximate counting [18] is useful for data stream and
database summarization. It can help in many settings that
allow only one pass over the data, want low memory usage,
and can accept some relative error. Approximate counters
use fewer bits; we focus on 8-bits but our results are general.
These small counters represent a sparse sequence of larger
numbers. Counters are incremented probabilistically based
on the spacing between the numbers they represent. Our
contributions are a customized distribution of counter val-
ues and efficient strategies for deciding when to increment
them.

At run-time, users may independently select the spacing
(accuracy) of the approximate counter for small, medium,
and large values. We allow the user to select the maximum
number to count up to, and our algorithm will select the
exponential base of the spacing. These provide additional
flexibility over both classic and Csűrös’s [4] floating-point
approximate counting. These provide additional structure,
a useful schema for users, over Kruskal and Greenberg [13].

We describe two new and efficient strategies for increment-
ing approximate counters: use a deterministic countdown or
sample from a geometric distribution. In Csűrös all incre-
ments are powers of two, so random bits rather than full
random numbers can be used. We also provide the option
to use powers-of-two but retain flexibility. We show when
each strategy is fastest in our implementation.

Categories and Subject Descriptors
E.4 [Coding and information theory]: Data compaction
and compression; H.3.3 [Information Search and Re-
trieval]: Information filtering; H.3.4 [Systems and Soft-
ware]: Performance evaluation (efficiency and effectiveness)
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Algorithms, Performance
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1. INTRODUCTION

1.1 Motivation
Summary datastructures are useful whenever the full data

are too large to store, such as data streams and out-of-core
databases. In monitoring network traffic, a representative
application is counting the number of times each pair of
IP addresses have communicated. Some pairs communicate
a lot, so perhaps we need a 64-bit integer for every pair to
store the exact count. That would use up too much memory;
besides, for large counts we only care about their order of
magnitude. For some database operations, having a sketch
of the number of items (or types) allows one to choose a
faster algorithm or a more efficient compression scheme.

The “approximate counting” family of methods stores a
counter for each item in the stream. This is distinguished
from the “heavy-hitter” family of methods, which counts
only the most frequent items: e.g. top-k or quantiles [1],
and iceberg queries or frequency thresholds [15]. An ap-
proximate counter uses less memory than a standard inte-
ger counter, but sacrifices some accuracy. It stores about the
log of the true count; it is ideal for representing the order
of magnitude of the true count. The classic implementa-
tion increments a counter probabilistically, using a random
number generator.

We describe an implementation of approximate counting,
including performance tradeoffs. This module may be cus-
tomized at compile or run-time, as needed by the applica-
tion, and for the expected real data.

1.2 Prior Art

1.2.1 Classic Approximate Counting
Classic AC (Morris [18]) is an established method. Each

approximate counter stores about the loga of the number of
observations n; counter value C ≥ 0 represents the number
N = φ(C) = (aC−1)/(a−1). (Here“a”is Morris’s (1+1/a).)
Normally we require log2M bits to store a number as large
as M , so storing logaM requires only log2 logaM bits.

The sequence of increasing C defines an increasing se-
quence of N ; the C are consecutive, but the N are not. The
counts are inaccurate, i.e. N ≈ n only, both because con-
secutive counts do not represent consecutive integers, and
because counts are incremented randomly. If C = 4 and
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Figure 1: Floating point increments are lower stair-
step approximations to classic AC.

another item is observed, we have only two choices: leave C
at 4 or increment it to 5. Given ∆φ(C) = φ(C + 1)− φ(C),
we increment C with probability p = 1/∆φ(C) = a−C to
ensure the expected value of C is correct.
C is called a q-ary counter if a = 21/r for r = 2u for integer

u. For an 8-bit counter, usually the base a is chosen quite
small. a > 1 is required but a value of a = 8

√
2 ≈ 1.09 might

be chosen, since φ 8√2
(255) = 3.9e9. Note φ2(255) = 5.7e76.

Kirschenhofer [10] considers a variant of q-ary AC with a
factor multiplying the probabilities, as our e in Section 2.1.
He analyzes the expected error in detail and contrasts to
another counting scheme.

1.2.2 Floating Point Approximate Counting
Recently Csűrös [4] described approximate counting us-

ing a binary floating point counter, stored in an unsigned
integer. The bits of the counter C are conceptually divided
into a d-bit significand u and an exponent t. The significand
counts by 1’s up to 2d − 1; after 2d the exponent is 1 and
the counting increment is 2, etc. In general, ∆φ(C) = 2t;
and φ(C) = φ(u, t) = (2d + u)2t − 2d, the value of C when
viewed as a binary floating point number.

See Figures 1 and 2. The red curves are the nine possible
φ functions for Floating Point (FP) AC using 8-bits. FP φ
are lower stair-step approximations to q-ary counting, base
a = 21/r for r = 2u. FP φ functions are piecewise linear,
with slope increasing by powers of two. The black curves are
the classic case rounded to integer values, as in our Flexible
AC. The curves for classic AC with floating point values
would be straight lines through the upper red points.

Csűrös’s approach has several advantages. Counting is
perfect up to 2d. Since ∆φ is always a power of 2, one can
use a random bit generator to decide when to increment,
which is potentially more efficient than a random uniform
floating point number generator. Also φ(u, t) is fast and
easy to calculate.

1.2.3 Error Analysis
Flajolet [6] analyzed the accuracy of approximate count-

ing, and showed that the expected value of the approximate
count is correct, and the expected error is acceptable because
the variance is bounded. AC error analysis techniques tend
to be sophisticated and not easily applied, and often rely
on ∆φ following a geometric series. Sometimes the base is
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Figure 2: Close-up of Figure 1.

assumed to be q-ary. Kirschenhofer et al. [9] simplifies Fla-
jolet’s analysis, avoiding real analysis by using the calculus
of finite differences. Mellin integrals and Euler’s formula are
central. Later, they [11] extended the analysis technique to
many familiar probabilistic algorithms besides approximate
counting. Errors are bounded but a limiting distribution of
values does not exist. Louchard et al. [14] provides a re-
cent analysis based on generating functions for a Bernoulli
model. Csűrös [4] and Kruskal [13] provide nearly identical
analysis frameworks. These analyses are straightforward to
apply and only rely on approximate counting being a pure
birth process (counts only increase) and not the exponential
base. We use this to show that our generalized φ function
has the same asymptotic error as Classic AC in Section 5.

1.2.4 Approximate Counting in Streams
The problem of counting items in a large datastream in-

spires several classes of algorithms, including approximate
counting, probabilistic counting, sampling, and sketches; see
“Counting by Coin Tossings” [7] for a survey. Approximate
counting is beneficial by itself, and lately it has been com-
bined with the other classes.

Recently AC was blended with sketches. Classic Bloom
filters [2] use a single bit to represent the existence of items,
regardless of count > 1. The Morris Bloom Counter [5] is a
combination of a Bloom Filter with AC: each Bloom filter
bucket keeps a counter, as in the Spectral Bloom Filter [3],
but the counter is an approximate counter of a few bits.
TOB [5, 21] is another way to count using Bloom filters,
by layering them, so that a deeper filter represents a more
“significant bit”. Using a separate hash function for each
layer minimizes the consequence of collisions. Deeper layers
may use smaller hash tables because they are visited less.
The count is unary, e.g. 3 = 1110 . . .. The TOMB[5] counter
replaces the unary bit of TOB with an AC of a few bits;
but like unary counting when a layer’s counter reaches its
maximum it stays at its maximum.

Classic approximate counters use the same number of bits
for every counter. For skewed data, this wastes space. Tal-
bot [20] encodes variable-length unary approximate counters
for skewed streaming data. A variable number of Bloom-
filters select bit locations in shared hash tables. The coun-
ters C are unary, the first 0-bit encountered denotes its end.
Sampling is blended with AC: frequent items need not visit
all their 1-bits every time. He notes φ may be an arbitrary



increasing function, chosen for the particular skew.
Flexible AC may be incorporated into any of these.

1.3 Flexible AC Summary
We define φ, the counts, and derive p, the probabilities.

We think this is the most natural for users. Morris did this
in 1978, and Kruskal [13] in 1991, but most authors reverse
this for ease of analysis, defining p to follow a geometric
series, and deriving φ as the expected value.

We store the φ function in an array. Our software will
function with this array filled with any increasing sequence;
Kruskal showed that φ may be arbitrary. We think non-
decreasing ∆φ is a good idea because accuracy is dependent
on the largest prior increment. We provide a particular func-
tional form for φ we think is an intuitive schema for users,
allowing them to customize φ to accurately capture the fea-
tures that are important in their application; see Figure 3.
For a fixed number of bits for C, the Classic and Floating
Point φ functions are dependent on one parameter: the base
a or the number of significand bits d. In Floating Point the
significand determines a threshold below which the count is
perfectly accurate; our users may also set a threshold below
which the count is perfect, but this does not determine our
entire φ function. Users may select the base, as is tradition,
or users may select the largest number to count up to, and
our algorithms solve for the exponential base. Choosing a
base is a common problem for all AC applications, but we
have seen no solution method discussed in the literature.

We describe several new options for determining when to
increment an approximate counter. Classic AC generates a
random number every time an item is seen. One new op-
tion is Fixed Countdown: increment after a deterministic
number of observations, dependent on the current counter
value, but using no random numbers. This works well if
the order of items in the stream is sufficiently random to
avoid a bias in the counts. A second new option is Random
Countdown: precompute a countdown counter equal to the
number of times in a row the classic approach would not in-
crement, which is a random number taken from a geometric
series. This is more efficient if the probability of increment
is small, because most of the time the test simply decre-
ments the countdown. These strategies require a constant
amount of extra storage, but can dramatically reduce how
many random numbers we need to generate, improving the
run-time.

In Csűrös’s Floating Point AC all increments are powers
of two, 2k. He can test whether to increment by generating
up to k random bits, stopping when the first non-one bit is
generated. We can round the numbers our counter repre-
sent to also follow powers-of-two increments, but retain φ
flexibility. We achieve about the same run-time efficiency as
Csűrös, with a constant-factor of memory overhead to store
φ in an array.

In Classic AC the numbers N = φ(C) are floating point.
Reporting to a user that an item had been observed “4.28”
times might be confusing, although it would be a reminder
that the count is only approximate. In our implementation,
as in Floating Point, our φ values are always integers, al-
though this is not fundamental except when we are using
power-of-two increments.

We provide an experimental comparison of the run-time
efficiency of all of these strategies. Fixed Countdown is by
far the fastest. If randomization is required, we think it
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Figure 3: Functional form of φ for our Flexible AC.

is best to use Classic or Csűrös’s RandomBit decisions for
small increment values then switch to Random Countdown
for large increment values.

2. FUNCTIONAL FORM

2.1 Flexible Phi
Our φ function is a discrete integer, strictly increasing

version of the continuous, strictly increasing function Φ.

∆Φ(C) =


1 if C = 0

d if 1 ≤ C < T

eaC−T+1 if C ≥ T

Φ(C) =


0 if C = 0

1 + d(C − 1) if 1 < C ≤ T
1 + d(T − 1) + ea

C−T+1−a
a−1

if C > T

Where a > 1, d ≥ 1, e > 0, and T ∈ N. Classic counting is
T = d = e = 1. Here ∆Φ = Φ(C + 1)− Φ(C) and Φ follows

from ∆Φ through the identity
∑K
i=1 a

i = (aK+1−a)/(a−1),

for a > 1. For C > T , we compute φ(C) = φ(T ) + beaC−T c.
This ensures ∆φ is non-decreasing. We enforce ∆φ ≥ 1.
Given φ, we calculate p(C) = 1/(φ(C + 1)− φ(C)). Both φ
and p are stored in arrays for speed. Finding C given N can
be done using binary search on the array.

2.2 Powers-of-Two Flexible AC
When constructing φ, we have the option of rounding (up

and down) all the increments to the nearest power-of-two.
Csűrös showed experimentally that the loss of accuracy is
insignificant. Figure 4 illustrates that our method can pro-
duce φ curves between the choices that a pure floating point
counter can provide. E.g. consider the large open wedges in
Figure 1 between d = {1, 2, 3} ⇐⇒ a = {

√
2, 4
√

2, 8
√

2}.

3. SOLVING FOR THE BASE IN AC
We find a so that Φ(max(C)) = M . Recall φ is a discrete

approximation to Φ, so φ(max(C)) 6= M exactly. However,
we usually achieve φ(max(C)) ≈M within many significant
digits, and only order-of-magnitude accuracy is needed.
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Determining a given max(C),M, d, e, and T resolves to
an inverse geometric sum problem. Classic AC is just the
special case of d = e = T = 1. Φ(T ) is determined by T and
d, independent of a and e. For an 8-bit counter, max(C) =
255, but here it can be arbitrary. Let K = max(C)−T ≥ 1.

M = Φ(maxC) = 1 + d(T − 1) + e
aK+1 − a
a− 1

(1)

⇐⇒ r(a) = aK+1 − sa+ (s− 1) = 0, (2)

where s = (M − 1 − d(T − 1))/e + 1. We seek the largest
positive real root of r(a) (2), since a = 1 is also a root but
not a solution to the original problem (1).

We have a reliable and efficient algorithm. The routine
has been tested for 1 ≤ K ≤ 1000 and selected floating
point values of s up to the range of numbers representable
in IEEE arithmetic. The equation is solved in constant time.
The root that is approximated is the largest root. The subtle
points are the initial guess, the choice of nonlinear solver,
and the convergence threshold.

3.1 Initial Guess
A good initial guess ao for a depends on whether s is small,

medium or large relative to K. Small is s − 1 ∈ [0,K + 1],
medium is ∈ [K + 1, ((4K)/(K − 1))K−1], and large is ∈
[(4K)/(K − 1))K−1,∞]. For small s, the initial guess is the
first order expansion of a in s−K.

Small s: ao = 1 +
2(s−K)

K(K + 1)
.

Medium s is both the most common and the most difficult
case to derive. Define q(a) =

∑K
k=1 a

k. A solution to (1)

has q(a) = s− 1, at which point da
ds

= 1/q′(a).∫ q−1(s−1)

q−1(K)

da =

∫ s−1

K

da

ds
ds =

∫ s−1

K

q(a)

q′(a)

ds

s
(3)

Since q(a)
q′(a) > 2a/(K + 1) and approaches equality as a→ 1,

we simplify (3) using q(a)
q′(a) ≈ 2a/(K + 1).

≈ 2a

K + 1

∫ s−1

K

ds

s
=

2a

K + 1
ln
s− 1

K
(4)

On the left of (3) we have
∫ q−1(s−1)

q−1(K)
da = q−1(s − 1) −

q−1(K) = a(s − 1) − 1. Combined with the right of (4) we
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Figure 5: The main datastructures for flexible AC.

have our initial guess ao = a(s− 1).

Medium s: ao = 1 +
2

K + 1
ln(

s− 1

K
).

For large s our initial guess is an approximation to the
largest positive root of yK+1 − sy + s = 0. This equation is
equivalent to y = yo(

y−1
y

)1/K for y0 = s1/K . We take yj as
our initial guess, by doing a couple of fixed point iterations.

Large s: ao = y4 : y0 = s1/K , yj+1 = yo

(
yj − 1

yj

)1/K

.

3.2 Solver
Given any of these initial guesses, we solve for a using a

nonlinear solver. In practice, the initial guess is very good
and only a few (about 3) solver iterations are needed. The
basic nonlinear solver is Euler’s method [22]. Euler’s method
uses a second order expansion, and selects as the approxi-
mate solution the root of smallest absolute value. A New-
ton update is used if the roots of the quadratic are complex.
Euler’s method is globally and monotonically convergent in
exact arithmetic [22]. A second order method also handles
the double root at s = K seamlessly. A special form of re-
currence formula is used if the absolute value of the residual
is greater than the square root of the overflow threshold.

The convergence threshold for approximate roots of r(a)
(2) is proportional to the error in evaluating r(a) in floating
point arithmetic, namely ε(1 + K/4) max(|r′(a)|, ak − sa +
(s− 1)), where ε is machine precision.

3.3 Phi With Easy Inverse
We are tempted to dispense with the need for a solver by

choosing a Φ with an easy inverse. One choice is the sum of
a linear and exponential function: Φeasy = d(C−1)+eaC−1

for C > 1, with T = 1. This yields a = K
√
r where K =

max(C) − 1 and r = (M − dK)/e. This function is about
the same as our ΦFAC for large C, but is much smaller for
small C.

4. STRATEGIES FOR INCREMENTING
We suggest a few ways to speed up deciding whether to

increment C. Figure 5 shows the main datastructures.

4.1 Classic AC Speedup
As a trivial warm-up, note that classic AC can be sped

up using a fast RandomBit algorithm, even when the prob-
abilities are not inverse powers of two, using the ideas of
Csűrös [4]; see Algorithm 1. The expected time is reduced
if generating a random double takes at least twice as long
as generating a RandomBit. In our case the time-savings is



Algorithm 1 Decide to increment, speedup Classic AC.

while p ≤ 0.5 do
if RandomBit then

return 0; [do not increment C]
end if
p← p× 2.

end while
[now test as Classic AC]
return (p = 1 or random double < p)

about 20% for general ∆φ. The time in Figure 7 does not
include this speedup.

4.2 Countdown
A drawback of Classic AC and Floating Point AC is that

the generation of random numbers or bits can be compute
intensive, at least compared to incrementing an integer! We
introduce the idea of using a countdown counter P instead.
Every time a key is seen, we decrement P , and when we
reach zero we increment C and reset P . If the probability
of increment is small, the countdown is likely large, so most
of the time we are simply decrementing.

If we had one countdown counter per item we are counting,
then this takes up as much memory as normal counting, or
more. However, we only need one countdown counter per C
value. This only adds a small constant amount of memory,
an array of the same size as our φ values.

This method can reproduce the behavior of classic approx-
imate counting, which shows it is provably correct: set the
value of P by actually generating random numbers until one
smaller than the probability of increment was generated, set
P to the number of random numbers generated. We speed
this up, achieving both correctness and efficiency in Random
Countdown. We also provide a deterministic variation. See
Section 4.4 for how the run-times compare.

4.2.1 Random Countdown
This method has identical expected behavior to Classic

AC, subject to the limits of random number generators.
Pclassic is the number of times in a row u > p(C), where u is
a uniform random number from [0, 1]. This is the definition
of a geometric distribution. Generate a random number u
uniformly from [0, 1], then P = b(ln(u)/ ln(1 − p(C))c has
the same distribution as Pclassic.

4.2.2 Hybrid
Hybrid uses Classic AC for ∆φ ≤ 10, then switches to

Random Countdown. Hybrid could also be combined with
RandomBit, both Floating Point and Powers-of-two, switch-
ing for ∆φ about 18–22.

4.2.3 Fixed Countdown
The countdown value is set to a preset value. This is the

most efficient method. If there is only one item to count, it
is also the most accurate. However, for multiple items, the
approximate counts will be unbiased only if the order of the
items in the stream are random. For example, if two items
alternate in the stream, one will likely be undercounted and
the other overcounted. For any fixed φ, certain stream pat-
terns would generate extreme inaccuracy.

A näıve choice for the countdown value is the recipro-
cal of the increment probability, P (C) = ∆φ(C). But this

C 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Δφ 1 2 3 4 5 6 7 8 9 10 11 12 13
P 1 1 3 3 5 5 7 7 9 9 11 11 13
n min 0 1 2 5 8 13 18 25 32 41 50 61 72
φ 0 1 3 6 10 15 21 28 36 45 55 66 78 91
n max 0 1 4 7 12 17 24 31 40 49 60 71 84

C 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Δφ 1 2 4 8 16 32 64 128 256 512 1024 2048 4096
P 1 1 3 6 12 24 48 96 192 384 768 1536 3072
n min 0 1 2 5 11 23 47 95 191 383 767 1535 3071
φ 0 1 3 7 15 31 63 127 255 511 1023 2047 4095 8191
n max 0 1 4 10 22 46 94 190 382 766 1534 3070 6142

C 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Δφ 1 1 2 2 4 5 8 11 16 22 32 45 64
P 1 1 1 2 3 5 6 10 13 19 27 39 54
n min 0 1 2 3 5 8 13 19 29 42 61 88 127
φ 0 1 2 4 6 10 15 23 34 50 72 104 149 213
n max 0 1 2 4 7 12 18 28 41 60 87 126 180

C 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Δφ 1 8 8 8 8 16 16 16 16 32 32 32 32
P 1 4 8 8 8 12 16 16 16 24 32 32 32
n min 0 1 5 13 21 29 41 57 73 89 113 145 177
φ 0 1 9 17 25 33 49 65 81 97 129 161 193 225
n max 0 4 12 20 28 40 56 72 88 112 144 176 208

Figure 6: Two fixed countdown examples.

deterministically undercounts, so the expected value is in-
correct. Consider counting a single item: we want to report
a value of φ(C) when n is closest to φ(C). A good choice
is P (C) = (φ(C + 1)− φ(C) + 1)/2 + (φ(C)− φ(C − 1))/2,
where division denotes computer division on integers so that
fractional values are dropped, and φ(−1) = 0. (Note that
P (C) = (φ(C + 1) − φ(C − 1) + 1)/2 will be incorrect if
φ(C + 1) − φ(C − 1) is consistently odd or even.) Figure 6
illustrates the concept and gives example values. If only one
item is approximately counted, then N = φ(C) is reported
for true count n ∈ [nmin, nmax].

4.3 Numerical Issues
There are some issues with very small numbers, both rep-

resenting them and generating them. In the classic case,
we must generate a random number u uniformly from [0, 1]
and check if u < p(C). The value p(C) = 1/∆φ(C) might
be quite small, say 10−10. It is important to know the lim-
its of the random number generator, the smallest value t
such that the probability of generating a value less than t
is approximately t, prand(u < t) ≈ t We cannot distinguish
between u < t, and should treat them all as some indeter-
minate value less than t. If p < t, then we cannot determine
whether we should increment by generating a single random
number. Instead, since p = prand(u1 < t)prand(u2 < p/t),
we generate u1, and if it is less than t, then we generate
a second number and test if it is less than p/t. (Repeated
until ui ≥ t.)

Several numerical issues arise in the random countdown
strategy. We are expanding a distribution over [0, 1] to a
distribution over [1,∞) so gaps between the distribution of
generated floating point numbers are exaggerated. For some
applications this may introduce an unacceptable bias. We
take care to fill in the gaps near 0 and 1, necessary for ex-
treme p. If u < t we compute P based on v = t and set a flag
so that when the countdown counter reaches zero, we do not
increment C, but just reset P to some new random value; see
the “increment when 0?” binary array in Figure 5. If u > T ,
where T is the largest value such that p(u > T ) ≈ 1 − T ,
then (depending on p) we must treat u1 = T and generate
subsequent numbers to improve the accuracy for small P .

4.4 Efficiency Comparison
We implemented and tested each of the strategies. Fig-

ure 7 plots run times for increments < 64. For increment
values < 256, we tested whether to increment a billion (1e9)
times, keeping the increment value constant throughout the
test. For RandomBit, the increment is rounded to the near-
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Figure 7: Time to test whether to increment C vs.
the increment (often 1/p(C)) for different strategies.

est power of two, hence the stair-step curve. RandomBit is
used in Floating Point AC and Powers-of-two AC. Hybrid
switching requires a small amount of overhead, which is why
the Hybrid curve lies above Random Countdown. The time
on the very left of Figure 7 reflects overhead, because if
the probability of increment was 1 no random number was
generated. Re-running the experiments at different times
resulted in a variation of about 5% due to machine activity.
In practice running times will depend on factors such as the
random bit and floating point sources, and the application
context, but we observe these trends.

Deterministic countdown is the fastest, as it involves sim-
ply decrementing a countdown-counter; if it reaches zero
there is a little extra work to reset it from a lookup table,
and to increment the actual counter. The extra work hap-
pens less frequently as the increment (countdown value) in-
creases. Classic counting requires generating a random float-
ing point number at each check. There is a little extra work if
the number is incremented. Hence the time goes down very
slightly as the probability decreases. In contrast, Random-
Bit generates a variable number of random bits. The time
increases slightly as the probability decreases, i.e. the maxi-
mum number of successive bits to check increases. The pro-
cedure to set the Random countdown counter is very costly,
involving computing two (approximate) logs, and several un-
derflow/overflow checks. This gets done more frequently
for small increments (large probabilities). However, Ran-
dom countdown is otherwise the same cost as deterministic
countdown. This is why we see Random countdown having
terrible runtime for small increments, but eventually beating
every other strategy besides Deterministic Countdown.

The times spanned several orders of magnitude. Random-
Bit was about twice as fast as Classic, with the biggest win

for an increment of 2. Random Countdown was about the
same as RandomBit for increments of about 20, becoming
increasingly better, e.g. by a factor of 4 when the increment
was 172. Random countdown took only 1.5 times as long as
deterministic countdown when the increment was 255.

4.4.1 Random Number Generators
For the source of random bits, we used Equation 10 in

Knuth’s vol. 2 [12], with 64-bit integers. Besides the seed,
the method also accepts a constant 64-bit input parameter
A, representing the coefficients of a primitive polynomial.
We set A to have a 1-bit in positions 56, 49, 40, 31, 24, 16,
8, and 0, because Knuth hints that a polynomial with more
non-zero coefficients is better, and Rajski and Tyszer [19]
describe this as a degree-64 primitive polynomial with many
1-coefficients. This provided a very good distribution of bits
for our requirements; the sequences of consecutive 1’s occur
with about the expected frequency as a truly random source.
By generating about 1e14 bits we verified the distribution’s
desired behavior up to 42 consecutive 1’s.

We also experimented with generating random integers
using Marsaglia’s KISS [16] and SUPRKISS64 [17], then ex-
tracting bits as needed. This took about 20% longer than
Equation 10 with no apparent advantages.

For the floating point random numbers, we used a Fi-
bonacci generator with about 100 state variables. We used
a variation of RANMAR from James [8], which is itself a
clean-up of an earlier code by Marsaglia and Zaman.

4.4.2 Recommendations
If speed is important, use Deterministic Countdown if the

stream is sufficiently random. Otherwise, use RandomBit
or Classic AC for small C, and Random Countdown there-
after. Use RandomBit rather than Classic if stairstep ∆φ is
acceptable. In our implementation “small C” means switch-
ing at φ(C+1)−φ(C) = 10 for Classic or 22 for RandomBit.
The threshold in other implementations will depend on e.g.
the complexity and accuracy of the underlying random num-
ber generators; compiler optimizations; how the overhead of
the checking strategy is implemented; and the hardware,
e.g. floating vs. integer flop speed, memory cache. If a lot
of items are expected to be observed only once, make sure
initializing the count is fast.

5. ACCURACY
We analyze our accuracy using the straightforward ana-

lytic framework of Csűrös [4]. Define accuracy to be An =√
Var φ(Xn)/Eφ(Xn), where Var is variance and E is ex-

pected value. Viewing AC as a Markov chain, the Xn are the
random-variables (C-value states) after counting n items.
We restate a key theorem using our notation.

Theorem 1 (Csűrös Theorem 2).

Var φ(Xn) = Eg(Xn),where g(C) =

C−1∑
c=0

1

p2(c)
− 1

p(c)

Lemma 1.

g(C) =


0 if C ≤ 1

(C − 1)(d2 − d) if 1 < C ≤ T
g(T ) + e2 a

2D−a2
a2−1

− ea
D−a
a−1

if C > T



where D = C − T + 1.

Csűrös’s Theorem 3 provides our asymptotic accuracy.

λ2 = limC→∞
g(C)

φ2(C)
= a−1

a+1
. Then limn→∞A

2
n = λ2/(1 −

λ2) = (a − 1)/2. This is the same as in Classic AC [6] and
Floating Point AC [4], as our extra e terms cancel, and our
other extra terms are unimportant in the limit.

6. CONCLUSIONS
In summary, we provide convenient control parameters

to generate φ functions customized for users’ applications.
Asymptotic errors are similar to classic approximate count-
ing. We have given the first description of how to deter-
mine the exponential base for (flexible) approximate count-
ing given a desired maximum count, and an alternative that
requires no solver. The community might explore alternate
functions that have both an easy inverse and the desired
accuracy in the regimes of interest.

We have shown how to speed up the process of deciding
when to increment; some datastream applications need to be
very fast. We have shown that using a countdown counter
can be much faster than even RandomBit decisions when the
probability of increment is small. All of our implementation
results used an 8-bit counter, but the techniques generalize.

In the future, those using approximate counting should
consider this flexibility to tailor their functions for accuracy
in the regime they care about. Error rates for these regimes
should be studied empirically in the context of the intended
application, as needs and consequences vary widely. Im-
plementers should consider how increment-decisions affect
run-time. When selecting a random number generator or
random bit generator, one should consider how it is used
in approximate counting; its useful limits may be different
than what other tests of “randomness” might imply.
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